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ABSTRACT

The objective of the video applications development platform research is to develop the technical basis for
Intelligent Frame Buffers useful in high definition displays. This project has three components: (I)
Physical implementation of the Intelligent Frame Buffer (IFB) which includes multiple cooperating
CPUs on a single display. (2) Software operating system support which forms the basis for display
sharing and display cooperation. (3) Applications-level software support which forms the basis for
programming the intelligent frame buffer in such applications as intelligent sensor fusion. The focus of the
work is on display sharing by multiple processors and intelligent autonomous display manipulation. The
IFB project operates in a domain that minimizes the need for explicit user input as opposed to domains
which involve pure user manipulation, e.g. "smart controls," such as 'fly by wire' systems which have no
need for display, or 'user monitoring.' This report describes the results of the first year of a multi-year
project, namely: (1) architectural design and hardware prototype of regular resolution IFB; (2) Survey of
work in realtime operating systems for imagery and MACH, resulting in an architectural design of real-time
MACH kernel for imagery; (3) Prototype regular resolution workstation integrating realtime MACH kernel,
IFB, and Advanced Video Display Systems (AVDS) applications building environments; and (4) Designs,
prototypes, and systems architecture design for high resolution IFB, MACH kernel and applications
building environment with networking.
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Video Applications Development Platform

Robert Thibadeau, Robert Berger, David Touretzky, Don Lindsay
Imaging Systems Laboratory
School of Computer Science
Carnegie Mellon University

Pittsburgh Pennsylvania

1. Summary: DARPA Report March 1993

The objective of the video applications development platform research is to develop the technical basis for
Intelligent Frame Buffers useful in high definition displays. This project has three components:

(1) Physical implementation of the Intelligent Frame Buffer (IFB) which includes multiple cooperating

CPUs on a single display.

(2) Software operating system support which forms the basis for display sharing and display cooperation.

(3) Applications-level software support which forms the basis for programming the intelligent frame
buffer in such applications as intelligent sensor fusion.

The focus of the work is on display sharing by multiple processors and intelligent autonomous display
manipulation. In the domain description below we show the IFB project domain as one that minimizes the
need for explicit user input. At the other end, pure user manipulation, is "smart controls," such as 'fly by
wire' systems which have no need for display, or 'user monitoring.'

IFB Applications Domains

'Intelligence' P

User Input

Figure 1.1. JFB Applications Domains.

The project will meet its first year deliverables of (1) architectural design and hardware prototype of regular
resolution IFB; (2) Survey of work in realtime operating systems for imagery and MACH, resulting in an
architectural design of real-time MACH kernel for imagery; (3) Prototype regular resolution workstation
integrating realtime MACH kernel, IFB, and Advanced Video Display Ssytems (AVDS) applications
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building environments; and (4) Designs, prototypes, and systems architecture design for high resolution

IFB, MACH kernel and applications building environment with networking.

2. Introduction to a Very High Aggregate Bandwidth Display

The question of interest is whether a single display control architecture is sufficient to handle all problems
in very high aggregate bandwidth displays. In the IFB, the display data is distributed or bussed across
processing nodes (PNs) and each PN may modify data on the display bus. All our discussion distinguishes
between architecture and implementation. The goal of our research is a statement of architecture which can
form the basis for a unified theory of display control. Implementations are architectural experiments,
committed to hardware and software, where it is possible to directly study performance implications of the
various architectural decisions.

Computer architecture over the last decade has focussed on local intelligence and high performance
computing with a result that display technology has suffered in certain significant ways. It is common
nowadays to have several displays per user where each display constitutes a significant fraction of the cost
of the workstation. A display for a 486 workstation will routinely cost 33% of the entire workstation cost.

Equally undesirable is when there is only one display location with sufficient display bandwidth to exercise
the capabilities of a particular supercomputing resource. Methods for smoothly combining processing
resources on a single display are largely concentrated on local area network models which require that
display information and other, transactional, information compete for bandwidth. The Intelligent Frame
Buffer is a first attempt to study the viability of decoupling display information from the other information
sources in order to, in the case of workstation profusion, lessen the number of expensive displays, and, in
the other case of supercomputing centralization, make use of more, less expensive, displays.

Several other computing scenarios also contributes to the interest. With recent interest in 'multimedia' there
are time critical display requirements such as real-time video. Modern advancements in algorithms and
computer speeds have made possible real-time video in a window[I, 21. Various initiatives are under way to
investigate operating system enhancements which permit scheduling real-time synchronization[3l. In the
not to distant future, workstations will support network video in the form of one or two video streams on a
workstation. However, the expense of expanding on the number of live video streams is great since
considerable computational resources are required. Supposing that a video stream requires about 20% of
the capacity of a modem workstation, and that workstations double in speed/performance every 2.5 years,
it will require five generations, or 12 years to reach the point of having up to 32 live video sources in
manipulable windows on a screen. The IFB display technology permits many live video sources in
resizable windows in a single generation.

Another basis for exploring display-only busses is the emergence of very high resolution displays. Some of
these may be made up of tiled display units. Circuits which can directly drive displays of tens or hundreds
of millions of pixels and which nevertheless permit flexible programming, such as windowing and scaling
systems, are beyond the reach of monolithic driver methods. The IFB controller architecture is suitable to
such tiling demands.

Multimodal presentation such as simultaneousflexible stereo visuotiation is another capability of such an
architecture. In this situation, resizable windows may variously contain stereo views which shift to
monocular views as the viewing goggles are removed or a person stands away from the "sweet spot." One
of our goals is to produce a single display controller architecture suitable for various classes of stereo
display M41. The coordination of sight and sound on an IFB should also be straightforward.

Finally, the goal of the display architecture is to permit the definition of cooperative processes among
disparate computations. We could envision a view on a football field on a screen. Automatic image
processing takes place to recognize, in real time, individual players, and a graphics processor is employed
to overlay a graphical rendering. In at least one fictional movie, Looker, we have seen real time video, real
time recognition, and real time rendering combined with effect. However, the more practical applications
may be in confirmational vision systems which generate views of what is seen in order for the person or
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machine to readily confirm the degree of confidence in the automatic recognition of what is seen.

The reasons for a separate display-data bus architecture are then:

* Display (or 'computer head') red',:ion in multiple workstation evironments.

O Display multiplication in singular high performance environments.

" Display reduct;:n and flexibility for high bandwidth real-time data.

"o Displo. tiling.

"o Multimodal Processing for Visualization (e.g., simultaneous stereo).

"o Cooperative Processing for Visualization.

Very high aggregate bandwidths are required of all these functions. For example, 32 live video sources
arbitrarily distributed on a 64 Mhz reference display involves an aggregate bandwidth in excess of 64 * 32
* 15 or 30,720 Mhz aggregate. If there are 32 tiled NTSC television displays for a 64 Mhz display signal
we get the same aggregate bandwidth requirement. Either specific case can be handled individually by
special case hardware solutions, but it is interesting to explore a single architecture which can handle either
and all requirements.

3 IFB Ring

3.1 Implementation for Year 1

The IFB display bus takes the form of a ring-pipe which is synchronized to the display replacement rate.
By definition, each cycle of data on the IFB ring-pipe is one replacement cycle (e..g., refresh) of the
reference display.

The IFB Ring Bus is the first implementation of the architecture being built at Carnegie Mellon that allows
any number of computers, video sources, or other devices to share a single display. In this implementation,
each display source has full bandwidth access to the display, as if the display were dedicated to that device.
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Figure 3.1. Architecture of the IFB Ring Bus.

Figure 3.1 shows the configuration of the IFB Ring Bus. The topology resembles that of a token ring
network. However, the data that circulates on the IFB Ring Bus is synchronized to the horizontal and
vertical refresh rates of the display. During each frame time the display controller at the top of Figure 1
transmits a blank frame consisting of a 32 bit word for each pixel. Each device on the ring changes some or
all of the pixels in the received frame and transmits the resulting frame to the next device in the ring. When
the frame has circulated around to the display controller it is displayed on the monitor. Each device has full
video bandwidth to the display. Any arbitrary subset of the pixels can be changed by a device during every
frame time.

Each pixel in the frame is represented by four bytes: red, green, blue, and depth. The depth byte allows each
pixel from a device to be assigned to any one of 256 planes. Hardware distributed among all the ring nodes
uses the depth bytes to determine in real time which node provides the displayed value for each pixel. This
depth plane resolution hardware can be used to efficiently provide:

"o Overlapping of windows from multiple nodes.
"o Cursors of arbitrary size and shape.
"O Graphics overlays for live video sources.
"o Distributed animation systems.
"o Stereographic 3D displays.

For example, a stereographic display can be produced by using two ring bus nodes, one each for the left and
right images. After each displayed frame, switching between the two images can be accomplished by
changing a single byte in one of the two frame buffer controllers, thereby changing the depth plane of that
,.ontroller's image.

Figure 3.2 shows the format of the display data on the ring bus. For each active horizontal line of a display,
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a packet of data circulates around the ring. This packet contains a 32 bit header and the 32 bit pixel values
for the line. The header includes a type field which distinguishes the displayed data from other types of
data which may be passed on the ring. The display packets are synchronized to the horizontal rate of the
display.

The display data does not use all of the ring bus bandwidth. If the ring clock is at the pixel rate, a typical
display format will have about 25% of the bandwidth unused due to the horizontal and vertical blanking
times of the video signal. It is also possible to run the ring at a faster clock rate than the pixel rate,
producing even more extra bandwidth. This extra bandwidth can be used for sending many types of non-
displayed data, such as multichannel sound, inter-node synchronization information, etc. One type of non-
display information implemented in the prototype ring bus architecture is a frame ID that is sent
immediately after the last line in each frame. The frame ID facilitates synchronization in applications where
multiple nodes cooperate to produce a dynamic display, such as animation systems or stereographic
displays.

Line 0 R G

R G O

A /Display Data

Linel I A GT0

Figure 3.2. Format of data on the ring.

The hardware architecture of the display controller is shown in Figure 3.3. The display controller is split
into two independent halves. The left half of the diagram is the initiator section, which puts blank frames
onto the ring at the vertical refresh rate of the display. These fraines consist of a constant background color
with a depth plane of 0.
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Figure 3.3. Architecture of the display controller.

The right half of Figure 3.3 accepts completed frames from the ring and formats them into an analog video
signal for output to a monitor. The ring bus clock and decoded horizontal header information are used to
generate the timing signals for the monitor. The display circuitry is totally independent of the initiator,
deriving its timing solely froin the information coming from the ring. This allows the nodes on the ring to
implement any constant delay they need for pipelining or memory latency. The display controller is not
affected by such delays. The only constraint on the amount of delay a node may introduce is imposed by
the interactive nature of certain applications. For example, if a node is implementing a mouse based user
interface in a system where the total delay of all the nodes exceeds a frame time, it would be best to place
the user interface node late in the ring to avoid perceivable delays in mouse tracking.
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Figure 3.4. A frame buffer node.

There are many possible ring node designs depending on the desired application. Figure 3.4 shows a
possible architecture of a node designed to interface a general purpose computer to a ring bus display. As
each line of displayed data is received from the ring bus, the corresponding line of pixels is read from a
local frame buffer. The depth value for each pixel in the local frame buffer is used as an index into a lookup
table called a depth map. The value from the depth map is compared to the depth value of the pixel
received from the ring. If the local depth value is greater than the received depth value, the local pixel data
is output to the ring; otherwise the input pixel data is output. A pipeline delay in the received pixel data
equal to the access time of the frame buffer and depth map insures that the correct pixels are compared.

After the displayed data has been through all the nodes on the ring, each pixel will contain the color of the
corresponding pixel from the node that had the highest depth plane for that pixel location. In this way the
hardware distributed throughout the ring performs a priority selection process to merge the data from the
multiple display sources in real time.
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The depth map allows an arbitrarily shaped set of pixels to share a common depth value. For example, all
the pixels in a graphics window, cursor, or other displayable object can be assigned a constant depth map
index. The depth of the entire object can then be changed by changing a single byte in the depth map. The
ability to change the depth of a large object by changing a single value facilitates dynamic applications such
as stereographic displays and animations.

The operation of the display is generally independent of the order in which the devices appear in the ring.
One exception is the interactive latency issue mentioned above. Another dependancy arises if two different
nodes use the same depth value for a given pixel. The result of such a tie depends on the order in which the
two nodes appear in the ring; the displayed result will be from the node closest to the initiator.

The prototype ring bus display controller is designed to drive a VGA standard monitor, which displays
640x480 pixel frames at a 60 Hz non-interlaced rate. In the prototype, the ring clock is the same as the pixel
rate of 25.175 Mhz, eliminating the need for line buffering in the display controller. Running the ring at the
exact pixel rate also eliminates the need for a phased lock loop in the display controller's timing recovery
section, avoiding a potential source of display jitter.

The physical layer of the prototype ring consists of 34 differential ECL pairs. 32 pairs are used for the pixel
data. One pair is used for the clock. The remaining ECL pair is a flag that identifies the header word of each
packet. The total bandwidth of the ring is 800 megabits per second, of which 600 megabits are used for
active display data, leaving 200 megabits for non-displayed data.

The configuration has Phase I and Phase II levels of hardware introduction. In Phase I any of several IFB
Ring node controllers on separate (or the same) 486 workstation may be run. Enough Master and Node
controllers are being fabricated to provide working hardware to any and all interested parties. In Phase II
the node hardware will be augmented to receive and inject live NTSC resolution video with dynamic
scaling and, of course, window placement. With the Phase II system it will be practical to achieve many
live video views in dynamically resizable windows on a single display.

IFB Ring
S4W6 EIS Running
MACHl Single Server PHASE I

thMaster ControLer

486 ELSA Running

rMACH Si3l. e Server odcio I
Unix X-Windows r"VGA/MTC RES

EISA B TPANM Node Controller

486 EISA Running PAEI
-- MACH Single Server ifVGA/NTSC RES

Unix X-Windows Node Controller

EtherNet LAN

Figure 3.5. Phases for Introduction of IFB Hardware.
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3.2 IFB Ring Architectural Study

3.2.1 Comparisons

In large measure the present work is unique. The lack of attention to distributed display control
architectures originates because displays bandwidths are high enough, and cost considerations are such, that
tight coupling contraints are preferred. In the present view, the bandwidth and cost considerations are
mitigated by the gain in display efficiency for delivering high aggregate bandwidth.

3.2.1.1 Bus Architectures.

Most existing bus architectures are inapplicable to the IFB display bus since they were not designed to keep
up and synchronize with the demands of display control and display sharing. Bi-directional busses, in
general, represent an, at best, inefficient, solution even if employed in an entirely dedicated fashion. For
example, the FutureBus+ specification does offer priority and high bandwidth but does not scale and is
only high-bandwidth for multiword transfers. It is inefficient for overlaying pixel priorities (viz., window
management).

The Scaleable Coherent Interface (SCI) bus certainly comes closest to the IFB display bus [5,6,7]. This bus
is similar in many respects, including the use of singular ring-pipe data flow and high bandwidth
unidirectional communication. However, the SCI bus has been designed to solve cache coherency
problems in multiprocessors and, as such, retains a notable lack of focus on display control. In particular it
does not fix volume of traffic, nature of traffic, and pipeline delay. We are currently monitoring SCI work
closely since it seems probable that it will represent a source of IC parts for the IFB controller operating at
the higher speeds necessary to directly support IM pixel displays.

3..1.2 Network Architectures.

The IFB can be considered an implementation of a Constant Bit Rate (CBR) network and, as such, needs to
be understood in terms of the recent explosion of interest in mixed CBR and Variable Bit Rate (VBR)
networks such as Asynchronous Transfer Mode (ATM) networks [s8. The physical isolation of a CBR
network from the VBR network is generally considered uneconomical for wide area networks and we
agree. The present argument is that a pure CBR network (the IFB) simply has certain distinct advantages in
achieving high aggregate bandwidths.

Nevertheless, the work on ATM networks must be considered deeply. The preference in achieving point-
point or point-multipoint contacts is to reduce data jitter in such bursty networks by specifying an intercell
or interpacket spacing. It is not our job (yet) to make specific implementation proposals, but the focus on a
CBR-only network should not prohibit the use of mixed CBR/VBR network implementations with CBR-
only data. Indeed, a nearly ideal situation would be an IFB node which can act, at low cost, as a gateway
to and from an ATM, or similar virtual circuit, CBR capable, network.

The ATM specification with its small, fixed, 53 byte cell size and relatively high, 46 byte, user density, is
similar, in many regards to the present focus on small, fixed size, low overhead, cells in the ring pipe.
However, the ATM is considerably slower, at a current peak 150mb/sec. Even SONET, at 1.2gb/sec does
not achieve the practical levels achievable with a small area display bus such as the IFB. Our focus in
achieving high aggregate display bandwidths is not fundamentally at odds with modem "multimedia
network" proposals. But it should be clearly understood that those proposals do not address the problems
of high aggregate display bandwidth very effectively.

3.2.2 Applicability Considerations.

The IFB Ring, in its current implementation, provides an obvious solution for each of the following four
application domains:
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" Display (or "computer head") reduction in multiple workstation environments.

"° Display multiplication in singular high performance environments.

"O Display reduction and flexibility for high bandwidth real-time data.

"o Multimodal Processing for Visualization (e.g., simultaneous stereo).

The current implementation does not provide ready solutions for the remaining two application domains:

"O Display tiling.

" Cooperative Processing for Visualization.

We now consider enhancements necessary to extend the domain of application.

3.2.2.1 Display Tiling

The display tiling problem is relatively simple as long as actual resolution remains within bounds of the
bandwidth of the IFB ring. Architectural extensions are required to supply higher real bandwidth than a
single ring can deliver in current technology.

In an NXM tiling of displays, each of several PNs controls a display tile and each PN has direct access to
the NXM source data. The IFB, in this case, is employed to establish synchronization of the source data to
the NXM display. In the simplest case, it is an absolute clock. If the NXM display is simply a blow up of
a display, the IFB would be defined as pipelining the single-display data to Modified PNs which
individually control tiles. Pipeline delay on raster supplied data is proportional to the number of lines
which one pixel in input makes in NXM pixels in output. The display latencies will be distributed and
extreme: this will require buffering several display replacement cycles (or, several pixels up to exactly one
display replacement cycle). The Modified PNs will have to buffer display pixels.

One possible means of minimizing buffering while retaining synchronization is suggested by the scheme
below which supports six display tiles (Modified PNs) with three clockwise moving rings. Each node
operates as described above for the single ring but, in addition, can switch data (2 X 2 crossbar + 2->I
output for display) to an alternative ring depending on fixed programmable display addressing. This
scheme generalizes well and is comparable to CBR ATM architectural design based on both the switching
capacity of the node and number of tiles (nodes). The fixed addressing provides for fixed, solvable,
prioritization and latency prediction. This method distributes ring bandwidth load by multiplexing. In the
instance illustrated below we can prove that each node receives data as a balanced binary tree and each PN
therefore receives its display data from 1/2 the capacity and configuration of two input rings and the
remaining half capacity is used to relay data to the appropriate ring. For example, if Node A injects data
for display on Node D, Node B must relay that data and Node C must switch it.
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Figure 3.6 Three Rings and six nodes for a six node tiling. Diagram on right Is logically equivalent
but may help in understanding the discussion In the text.

With this scheme, a given node processor can generate more display data than a single other node
(including itself) may accept. For example, it may generate a window of image data which involves more
than one other node for display. The physical IFB ring has two channels and therefore each channel can
run at one half the real bandwidth of the entire 3X3 display. However, there must be explicit pixel
addressing since pixel location is the basis for the 2X2+2->1 switch in each node. The addition of three
other rings to two nodes each (A-C, F-D, B-E) reduces channel bandwidth loading to 1/3 total but requires
a 3 X 3+3->l switch at each node. The advantage of this six ring case over the three ring case is that
routing, and therefore latency, is now reduced by half. These are all well understood concepts in switching
theory. The point of this analysis is not to review switching theory but to note that such a structure permits
complete, high resolution, display control by a single node or any other configuration programmed. To the
extent that CBR ATMs can be dedicated to display control, the basic ATM architecture may be applicable
to the IFB although the SCI bus, as mentioned earlier, may provide all the control required using its
provision for joined rings.

3.2.2.2 Cooperative Processing

Cooperative processing involves the case where a node may modify, not simply replace, the contents of a
display value. This puts constraint on either (a) the speed of the electronics in the node, or (b) the depth of
the (effective) FIFO or both. Generally speaking display control pushes speed to the limit, although tiling
schemes for tens or even hundreds of low bandwidth individual displays as outlined in the last section may
be used to stay well below any limits. In any event the depth of the FIFO is likely to be larger and
therefore the need to explicitly make provision for latencies is important. The simplification which the
IFB provides is that the latency for each node to display is known and fixed. Therefore software and
hardware can be prepared for such latencies.

4. Operating Systems Software

The bandwidth requirements on the IFB ring-pipe depend on how data on the ring-pipe is mapped to the
display. A PN, such as a workstation or video injector, has access to the IFB by defining a FIFO buffer of
a specified depth in display ticks. This introduces a pipeline delay for each PN of at least one tick but
potentially considerably more. A special necessary PN is the single master controller. This may, or may
not, be directly feeding data to a display. A given IFB has a fixed pipeline delay which implies that data to
the display is always delivered at the full replacement rate of the display. The pipeline delay is fixed so that
different PNs by design or by programming can anticipate proper display actions. In other words, in a
synchronous display bus there is an opportunity for implementation software to synchronize on display. In
the architectural definition, we anticipate the use of display control data ("invisible pixels") which
communicate synchronization parameters to software. The pipeline delay structure can be measured in
display ticks (the equivalent of display clock cycles) or whole replacement cycles. The longer the pipeline
delay the less "interactive" the display although it seems clear that little is sacrificed to a display which is
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only a few display cycles (e.g., 100 msec.) delayed from external input control since the architecture
delivers "smooth" control as opposed to "jittery" control. In pure visualization tasks which lack all but
"button press" control, the pipeline delays could reasonably be counted in many display cycles (e.g., as
much as a few seconds).

The fixed pipeline delay associated with the IFB architecture is associated with the latency introduced by
Dannenberg[91 in his client-server architecture for real-time operating system control. A Tactus Server is
defined as a real-time server with a fixed latency registered to all clients or the operating system scheduler.
This server constitutes an essential ingredient of the IFB architecture.

The basic purpose of the effort in MACH operating system development is:

Getting very fast and smooth interaction between humans, and a a display which can be
extremely active but not jittery.

"A way to scale the image display and image transformation power of a system, smoothly and
incrementally, from low to high end.

"A way to get diverse equipment and data under the same human interface.

Development of an appropriate Tactus Server for each IFB node which is able to add data to the display (or
modify existing display data) is now assumed to be the major requirement.

4.1 Evaluation of Real Time Mach

The Mach 3.0 microkernel has been developed to include various real time features by ourselves and others

[101 including OSF [lt. The 'real time' features include

- higher resolution timing services including an absolute clock

- privileged programs able to wire pages down

- privileged operation to set scheduling policy

- resource reclamation after wired-down processes die

- lock reclamation after threads die

- threads may tell the system their deadlines, and say who is to be informed if a deadline is missed

- a mutex form offering priority inheritance

- Dannenberg's Tactus server which tells clients to expect fixed latencies and that establishes threads
with tightly known deadlines

The Tactus Server is a Mach 3.0 multithreaded message server. During this period, we completed a
complete Mach 3.0 device driver for a video board which can act as such a message server.

In one experiment, we established that 'tightening down MACH' for real time performance will still not
remove jitter problems on the display. Even with these modification, experiments revealed the limitations
of existing display technology. MACH 3.0 with X-windows is fast enough that it can play uncompressed
color video from disk, thru X-windows, to a 160 x 120 window at 10 frames/second (on a 33 MHz 486,
IDE disk). It can do 15 f/s, but the jitter, even at this low screen resolution, is now substantial. The removal
of jitter problems in a large range of desirable workstation and high resolution view-only display behaviors
requires a coupling of real time MACH enchancements with the cabability of writing high bandwidth data
directly to the display.
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An interesting property of the Tactus Server running on a PN which may also act as a gateway to an ATM
network is that it can declare its latency based on both its configuration in the IFB ring pipe and the demand
it places for CBR data on the ATM network. The result is a consistent and predictable CBR with a given
latency to the display without the arbitration of a CPU which may be running out of cycles to maintain its
real-time behavior.

5. Applications Layer Software

Very high aggregate bandwidth displays will be capable of delivering substantial information to the person
watching the display. In order to provide a working environment for the video applications development
platform, we have investigated intelligent filtering as client processes in the MACH environment. The
objective was to demonstrate that this type of display has compelling practical applications. In the EFB,
these applicationQ may all be thought of as clients of Tactus Servers. Our goal was to understand how these
client applications may make demands on these display servers. For this purpose we are prototyping
intelligent agents which may simply be called on to monitor information traffic otherwise available to the
system and provide appropriate visual display information to the user when, where, and how he needs it.

5.1 Television Computer Experiment

The first experiment involved consumer uses of a "television computer" that monitored a variety of
information streams and extracted information relevant to the user. These information streams included
constantly-updated public safety advisories (tornado warnings, chemical spills, etc.), a variety of classified
advertising streams, resource catalogs (e.g., restaurant guides), and event scheduling (programming
schedules for both television shows and the information stream itself.)

We developed a simple, menu-based user interface designed to be immediately usable by people with no
computer training. We also explored various styles of interacting with the device as an information filter.
For example, when browsing the restaurant guide, there were various ways to restrict the search (e.g., by
cuisine, location, hours of operation, etc.), and the current restrictions were always displayed in a "search
header" at the top of the listing. Classified ads could also be browsed, but a more common access strategy
would be to set up a "clipping service" agent to continually clip ads that meet certain specifications. The
user could then check periodically, at his convenience, what the intelligent agent had clipped for him. The
control of clipping requests was via the same menu-based interface used for browsing data and
communicating with agents.

At the opposite end of the spectrum from the clipping service, the application that handles emergency
advisories would grab control of the display on its own initiative, perhaps even turning the display on if it
had been powered down, and beep to attract the user's attention. Users would be able to obtain progressive
warnings about a threat (e.g., estimated time of arrival of a tornado approaching their location) on request;
they could also disable further interruptions from the application concerning that threat.

5.2 Thousand Eyes Experiment

The second experiment was a futuristic "thousand eyes" battlefield scenario in which video cameras were
dropped over a large area, each broadcasting (in 'spread spectrum' fashion) from its own position, with
client applications selecting camera views dependent on the position of the individual viewer in a jeep or
tank. The idea was to show the viewer anything ahead or nearby that might pose a threat or affect his
mission, given knowledge of his present position and intended route. In addition to the ground cameras, we
also assumed video transmissions from orbiting drone aircraft. Thus, there were a huge number of possibly
relevant real-time video streams: far more information than one person could sift through manually. The
client applications were responsible for making the first cut of what to display, subject to further
modification by the user. They might display several video streams simultaneously, but not hundreds.

In creating this experiment, we used a scenario in which the city of Pittsburgh was under attack from the
east. The "front" ran in a north-south line just west of the CMU campus. A military vehicle (an actual
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HMWWV jeep borrowed from the Autonomous Land Vehicle group) was attempting to travel east on
Forbes Avenue from the downtoN.. area to CMU. This route had been seeded with "thousand eyes" video
cameras every few blocks, all broadcasting simultaneously, which could see the vehicle as it passed by. In
addition there were two drones in the air; one orbited the downtown area, while the other followed a north-
south flight path to monitor the front. We used actual aerial footage of Pittsburgh shot from a small plane
by one of the project members.

The display was designed to be useful to the operator of a vehicle traveling in the combat zone. There was
a moving map display showing the vehicle's present position, the position of nearby ground video cameras
and their fields of view, the ground tracks of the airborne drones, and the front line. The experiment ran on
a NeXT machine with three attached VCRs. There were also three simultaneously active video windows.
Two of these displayed aerial images from the drones. The third displayed an image from a ground camera.
As the vehicle moved across the terrain, its position on the map changed, and the client software
automatically selected a new ground camera video stream so that the operator could always monitor what
was ahead on his intended route. The vehicle itself was visible briefly as it passed by the ground camera,
before the view switched to a camera further ahead.

Due to the limitations of the NeXT Dimension board, it was not possible to display three real-time video
sources simultaneously. Therefore we displayed real-time images from one source, and still frames from
the other two, updated every five seconds. The user could choose which window ran in real-time by
mousing on it. Of course, with a functioning IFB it would be possible to display all three streams in real-
time, scale the images to fit in smaller windows, and so on.

A more mundane application utilizing multiple real-time video streams is video conferencing. Mantei et al.
(1991) report on a prototype system in which each office is equipped with a video camera. The system
displays a map of the environment area with an icon (in this case, a miniaturized photo) in each room
depicting the owner of that office. Users could put together a video conference by mousing on icons and
dragging them to their own office location; each participant then shows up as a separate video window on
the display. Some of the tehcnical problems they report with lighting adaptation, audio level adjustment,
focusing, and choice of camera angles could perhaps be addressed using signal processing and computer
vision techniques. The IFB would make it feasible to experiment with real-time adaptive processing of
multiple video streams.

5.3 Sensor Fusion Experiment

We constructed a sensor fusion experiment based on the same NeXT Dimension technology used in the
previous experiment. The primary goal was to illustrate the advantages to be had from combinirg diverse
data sources from multiple, independent processors into a single display presentation. These sources might
include (1) maps; (2) diverse real-time imagery: video, radar, IR, etc.; (3) non-image sensor information,
such as transponder codes or RF signatures; (4) graphic overlays; and (5) database queries.

The scenario for the experiment was a command and control application in which the operator must track a
series of unknown targets and assess their threat potential. The format was modeled after the AEGIS
system. The following paragraphs describe the layout of the display and the various options available.

5.3.1 Detailed Sensor Fusion Experiment Description

In this demo, the TACSIT (tactical situation) display is the largest window on the screen. Additional
information windows appear along the sides. Some are associated with targets being tracked on the
TACSIT; others are pop-up windows that appear in response to operator requests. There is also a row of
icons along the top of the TACSIT, used for controlling the simulation.

The background for the TACSIT is a map of some portion of the world. Water is displayed in blue; land in
yellow. Map data is provided by an independent map server process, which we created based on code from
the GOTS Alternate Environment Map Server version 1.5.6.8 by Tiburon Systems. This code was obtain
from Intermetrics as part of their CRSS (C31 Reusable Software System).
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Mousing on the map control icon (a globe) causes a pop-up window to appear with a small map of the
world and various map control buttons. The region currently being displayed on the TACSIT is shown by a
white rectangle on the world map. The operator can shift the displayed region to anywhere on the globe,
change the display scale, and add political boundaries if desired.

Also on the TACSIT display, superimposed on top of the map information, are target symbols. Target
types include aircraft, missiles, surface vessels, and submarines. They may be classified as hostile,
friendly, or unknown status. We use the AEGIS conventions for target shapes and colors. Hostile targets
are shown in red; friendly ones in blue; unknown targets in green. Target information, including type,
location, speed, and altitude, is supplied by a locally-written OTH (Over the Horizon) data server driven by
radar track files. The track file data was obtained from GE in Moorestown, NJ. In some cases these files
contain data from real events involving US warships. The main track file, called all.out, depicts an incident
involving the shooting down of two Libyan Migs in the Gulf of Sidra by two US Navy F-14s.

Mousing on the display control icon summons a pop-up window with TACSIT display controls. Some of
the available options include: display a compass rose, choose which types of targets will be shown (air,
surface, or underwater), display heading vectors for selected targets, display cumulative track information
for selected targets, and center the display over a selected (possibly moving) target.

Any target on the TACSIT display can be selected by mousing on it (called "hooking" in AEGIS
terminology.) Hooking a target brings up a pop-up window along the left side of the TACSIT display
which can be used to view several different types of data. It intially comes up as a radar target information
display (menu item "INFORMATION"), showing the target's lat/long coordinates, course, and speed.
Other menu items allow the operator to call up other sorts of information and/or image data, described
below.

If the target type has been identified, e.g., an F-14, the DATABASE menu item calls up information about
that type of target, such as maximum speed and altitude and known armament types. The PICTURE menu
item displays a color photo of that aircraft type.

The RADAR IMAGE menu item displays a real-time radar image of the target. We are extrapolating here
from recent reports in Aviation Week showing that radar technology can be used to image aircraft in flight.
For the purposes of this experiment, we display a synthetic time-varying image based on the silhouette of a
typical aircraft.

The VIDEO menu item, available only for friendly targets, displays real-time video image data transmitted
from the target back to the AEGIS cruiser. Typically this would be the view from a video camera mounted
next to the pilot's head, looking forward through the HUD (Heads-Up Display), so that the AEGIS operator
can have a pilot's eye view of the situation.

A third icon located above the TACSIT display is the database access icon. It allows the user to retrieve
information from various textual and image databases in a subwindow. One such database is a schedule of
civilian airline flights whose route is predicted to cross the region on the TACSIT display. In several past
incidents involving military warships, this information has been helpful in identifying an uknown target as
a probable civilian flight.

Another database resource is digitized ONC (Operational Navigation Chart) images for the region on the
TACSIT display. ONC charts show cities, terrain type and elevation, air navigation aids, and some types of
airspace structure -- information not available from the map server. The user can scroll around on the chart
to examine areas of interest.

5.3.2 Assessment of the Sensor Fusion Experiment

The sensor fusion experiment was intended to show the advantages an IFB would offer in command-and-
control situations, namely, the ability to combine and display multiple high-bandwidth information streams.
However, because of the limitations of the NeXT Dimension video board, we were not able to fully emulate
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the functions an IFB would provide. Thus it was not possible to display, for example, simultaneous real-
time pilot's eye views from multiple aircraft. The NeXT Dimension also did not permit us to scale images
in real-time, e.g., to monitor a miniaturized version of the video stream in a tiny window while most of the
display is used for something else. However, we can still show some of the effects of an IFB by
simultaneously displaying video data in one window and synthetic radar imagery in another.

Due to speed limitations of the NeXT workstation, it also is not practical to scale or otherwise manipulate
stored digital images such as the ONC charts, since this would take too long relative to the pace of the
simulation. In a real IFB implementation, dedicated processors would handle these computations, so the
operator would be able to manipulate a variety of image sources simultaneously.

A good example of an industrial application for this type of sensor fusion is the recent work of Tani et al.
(1992) on video-mediated interaction with real-world objects. They use multiple video cameras to monitor
machinery in a mock-up electric power plant installation. The machinery may cither be fixed (e.g., pipes,
boilers), or mobile, provided the nature of the motion is known to the system. Their "Object Oriented
Video" system superimposes grapics on top of the video stream, and switches video streams as the operator
changes his focus of attention. For example, pointing to a fuel pipe in a video window causes (a) the fuel
pipe to be outlined in blue, (b) a small graphic to appear next to the pipe in the video window, indicating
the current fuel flow rate, and (c) a plot of fuel flow through the pipe over time to appear in an associated
graphics window. Pointing to a burner causes it to be highlighted by a blue rectange, and a pop-up window
appears inside the video window with an explanation of the ignition procedure. Pointing to an observation
port on a boiler unit causes it to be highlighted; zooming in then ca .;es the system to switch to a different
video source: a camera monitoring the flame inside the boiler.

Tani et al. do not attempt to display multiple video streams simultaneously. Nor do they devote much
computation to analyzing the contents of the streams; their system must be pre-loaded with the locations of
fixed objects in each video stream, and programmed to associate current positions of moving objects with
particular locations in the camera's field of view. A system that could dynamically track objects would of
course be more expensive to construct, but also much more flexible and useful. Dividing this work across
multiple processors is feasible with an IFB.

5.4 Future Applications Experiments

We plan to further develop our sensor fusion demo into a more realistic demonstration of handling multiple
real-time data streams. One idea we're investigating is using two adjacent displays, driven by separate
NeXT machines, to provide a greater number of simultaneous image streams. Another idea is to use some
NeXT Dimension programming tricks to simulate brief segments of real-time video in multiple small
windows at the same time.

We plan to develop a customized radar "script" to replace the GE track files. Various targets will appear on
the screen and the operator must react. Some will be harmless civilian targets, but others will be hostile and
must be identified and dealt with before they come within striking range of the ship. This scripted approach
will make for a more directed simulation and will make it easier to show off the sensor fusion issues which
are the real point of the demonstration.

5.5 Applications Layer Architecture

The variety of applications scenarios provide for high aggregate display bandwidth which would normally
be expected to dramatically degrade the performance of even the most powerful workstations. It seems
clear that a single high resolution display invites display participation by quasi independent, high
bandwidth, nodes. Figure 5.1 summarizes some of the high bandwidth sources which have been
investigated for architectural considerations.
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Figure 5.1 Example IFB Configuration

The central concept of an application client to a Tactus Server on an IFB node appears to be that the server
can feed back display requirements to the client as server to the information source. This is illustrated in
Figure 5.2.

Figure 5.2 The Client Display Filter

If this successfully ge'neralizes, then the Tactus Server will have an enhanced form. The Enhanced Tactus
Server is envisioned to hide latency considerations from the information source and to handle display
filtering (e.g., display scaling, information search) dependent on display requirements which may be
dictated by the user(s) of the very high aggregate bandwidth display(s). A filter behaves like a registery.
A simple filter is one that provides 'private' regions of any given display which are visible only to the local
display. Furthermore, the attribute of 'window rights' coupled with the attributes of 'window priority' and
'local-only override' become the basic ingredients for a well behaved distributed display control system.
(12, 131
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